易教网-广州家教
当前城市:广州 [切换其它城市] 
gz.eduease.com 家教热线请家教热线:400-6789-353 010-64436939

易教网微信版微信版 APP下载
易教播报

欢迎您光临易教网,感谢大家一直以来对易教网广州家教的大力支持和关注!我们将竭诚为您提供更优质便捷的服务,打造广州地区请家教,做家教,找家教的专业平台,敬请致电:400-6789-353

当前位置:家教网首页 > 广州家教网 > 高考资讯 > 如何学好立体几何

如何学好立体几何

【来源:易教网 更新时间:2015-02-04

  立体几何一直是高中数学的一大难点,在已经掌握了平面几何的基础知识后,要进一步学好立体几何的基础知识却并不容易。因为从平面观念过渡到立体观念,对一般学生来说,困难较多。产生困难的原因是立体几何比平面几何研究的基本对象多了一个“面”,而这多出的一个“面”,使得在平面几何中点和直线之间的三种位置关系(即点与点、点与直线、直线与直线)拓展为立体几何中点、直线和平面之间的六种位置关系。

  那么,怎样才能学好立体几何呢?

  第一,建立空间观念,提高空间想象力

  为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。还可以通过画图帮助理解,从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。

  第二,掌握基础知识和基本技能

  直线和平面是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

  第三,积累解决问题的策略

  如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点——一个固有的或确定的数学关系。

  第四,重视证明过程

  各类考试中都有立体几何论证的考察,论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法形式写出。

  第五,充分运用“转化”思想

  解立体几何的问题,要充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。通过转化可以使问题得以大大简化。

  第六、平时注意规范训练

  在平时要养成良好的答题习惯,按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。

-更多-

最新教员

  1. 黄教员 华南师范大学 历史师范
  2. 刘老师 中学二级教师 数学
  3. 彭教员 广东岭南职业技术学院 药学
  4. 王教员 广州大学 工商管理
  5. 王教员 广州大学 工商管理
  6. 刘教员 广州大学 工商管理 计算机科学与技术
  7. 钟教员 广州大学 工商管理
  8. 吴教员 中山大学 材料工程
  9. 林教员 广东技术师范大学 工艺美术(师范)